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A B S T R A C T

Given a sample set X1,... ,XN of independent identically distributed

real-valued random variables , each wi th the unknown probability

density function f ( .) ,  the problem cons idered is to est imate f from

the sample set. The function f is assumed to be in L2(a,b); f is not

assumed to be in any parametric family. This paper constructs an

adaptive “two—pass ” solution to the problem: In a pre-processing

step (the first pass), a preliminary rough estimate of f is obtained

by means of a stan-dard orthogonal-series estimator. In the second

pass , the preliminary estimate is used to transform the orthogonal

series . The new , transformed orthogonal series is then used to obtain

the final estimate. The paper establishes consistency of the

estimator and derives asymptotic (large sample set) estimates of the

bias and .-c1 ’iance. It is shown that the adaptive estimator offers

reduced bia s (better resolution) in comparison to the conventional

orthogonal series estimator. Computer simulations are presented

which demonstrate the small sample set behavior. A case study of a

bimodal de sity confirms the theoretical conclusions.
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1.

I. A. Introduction

A real random variable (r.v.) I is characterized by the

associated cumulative distribution function (c.d.f.)

1) F(x)~~~Pr[X~~x1

If the measure induced on lR by F is absolutely continuous with

respect to Lebesgue measure , then we may define the probability

density function (p.d.f.) f (•) as

2) f(x)
~~~~ 

i~ (x)

the Radon-Nykodym derivative of F. -

In many stat istica l situations , the p.d.f. is not known a priori ,

and the investigator must estimate f from a sample set

where each is independen t with density f(.).

In many cases , mathematical analysis or physical theory l eads

to the conclusion that f belongs to some class of functions which are

characterized by some parameters P1’~~ ~~~~~~ 
Then the investigator

mus t only determine the values of the r parameters . This is called

“parametric estimation. ” Ar1 example is the frequently occurring

case where ~ is a Gaussian r .v .; then only the mean

=

and vari - nce

2 1V\  — r Iva- ~~~~ 
- L

U are required to characteriL~ x.
Hc~ever , in  r~any si~ - .tions , the p .d.f. f belongs to no known

:f 
parametric class , This si t~’:~..ion may arise when the under lying

physical mechanis m genera t~n~ I is unknown or extremely complicated .

In this case the investigator must estimate the entire function f(.)



2.
rather than a vector of parameters. This task is known as “non-

parametric” estimation .

Several techniques of non-parametric estimation have been

proposed by a number of researchers. These will be reviewed below .

The current work concerns a modifi cation to one of these

techniques, namely the orthogonal-series estimator. We propose a

prior transformation of the orthogonal series which “tunes” the

series to the given sample set. The effect of the transformation is

to reduce the bias of the estimator for a sample set of a given size

N. The transformati on is obtained from a pre-processing step wherein

we examine the sample set before applying the estimator.

1.8. Suninary of Previous Approaches

One of the earliest and most widely studied n or m - ..n-~ ~ tric

density function estimator - was introduced by M. Rosr’~ i a t t  [lJ in

1955. He proposed the kernel -type estimator

f(x) = t

where K(.- ) is a given kernel function and h = h(N) is ~ scal ing factor

depending on the sample size N. The estimator was f~ r~~er studied

- 

- by E. Parzen [23 in 1961 .

G.S. Watson and M.R. Leadbetter [3J investigated coti: I choices for

the kernel shape K(•). A particular kernel shape offering attractive

theoretical and practical properties was obtained by 2.0. Bennett ,

R.J.P. de Figueiredo , and J.R. Thompson [43 with the use of B-splines.

K.B. Davis [53 studied a kernel which is not L1 and de~orms tr at e d
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superior asymptotic properties; numerica l trials with small sample

sizes show poor performance , however [6). Convergence condi tions for

kernel estimatol’s [7) and related nearest neighbor estimators [83

were studied by L.P. Devroye and T.J. Wagner.

Another type of estimator, using an orthogonal series expansion ,

was introduced by R. Kronmal and M. Tarter [9], Cencov [10), van

Ryzin [ii) , and Schwatz 112]; they developed error estimates an~
optimal series approximations. The optimal results require knowl edge

of the unknown density f. H.D. Brunk 113:! considered ways of extract—

ing the needed knowl edge from the sample itself.

A totally different approach was taken by G.F. de Montricher ,

R.A. Tapia , and J.R. Thompson [14). In this theoretical paper , the

density estimate is the one which max imizes a penalized likelihood

~ ‘~ction. A descretized numeric al implementation by 0. Scott [21),

excellent small-sample performarce. An earlier effort along

t: ece lines is that of I.J. Good and R.A. Gaskins [15].

A. Wragg and D.C. Dowson [16~ use the information-theoretic

concept of entropy to fit density functions to a truncated moment

s~”- .- ;nce . Grace Wahba rl7J and P. Whittle [18) employ notions from

:c~-~stic processes to obtain “optimally-smoothed” density estimates.

C. Surrniary of Results

In section II , we take a clc~~ look at the orthogonal series—

type estimator , and develop asy~~pt LJ c error analys 1 s for the special

cace of the Fourier series est imnatc r . In section III , we introduce

a new data—adaptive modificatio n of the Fourier series estimator .
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4.

The series is modified with a transformation deri ved from a pre-

processing step. The modified series reduces the bias of the estima-

tor for a sample set of given size N. We develop the asymptotic

error analysis of the estimator and produce consistency results .

Final ly, in section IV we exami ne some computer simulations to study

the behavior of the estimator on small sample sets.

I. 0. Notation and Conventions

Throughout this paper we will assume the following notation

and conventions.

1) ~ is a real-val ued random variable wi th probability density

function (p.d.f.) f(.).

2) We are given a sample set of size N

Ill, X2,... ,XNI where each is an independent realization

of X.

3) The expected value of I is denoted by E [I) and the squ.:.— e

of E [XJ by (E [xJ )2~ The notation E fXJ 
2 is the same as

E [x 23.
4) The asterisk z~ denotes complex conjugate .

5) The symbol D denotes the end of a proof .

L .. . _~~~~~~~——~~~~~~~~~~~~ -~~~ -~~~~ 
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5.
I I . A .  Series—type Estimators

Consider a (Lebesgue) integrable function g defined on the

interval (a ,~ ). Let g satisfy g ( x ) ’ O  almost everywhere for

x in (a,b) and J’

~~~ 

g(x) dx = 1.

We can define 12(g), the class of square-integrable functions

weighted by g.

1) 12(9) 
= ~s:(a ,b)-’IR I S~ 

s(x)2g(x)dx <oo3

Furthermore, let there be given tuk(~
)
~ 
Z°=O, a complete orthonormal

family in 12(9).
Suppose that f(.), the p.d.f. of the random variable X, is

such that fig is in L2 (g). Then f may be expanded as

2) f(x) = g(x) 

~~ 

bkuk(x).

By orthn’~cnal i ty, we can see

E [u~(~ )J i ( x)f (x)dx

= u~ (x)a(x ) 
0 

b k uk (x)dx

= b~ .

Now an estima tor for bk is

3) u (X .).
‘ 

~i=l
Thus we cart ccns truc t  an est imate of f by

fl
i )  f(x) ~ e(x) 

‘

~~~~ 
bkuk(x)k ~0

For some n ~ ~~~.

It is rasy to derive error expressions for (~ ) in ten~s of the

coefficients in the expansion (2). A conveni ent error measure is - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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lb E1P~~~f(x)I2 
dx = 

fb 
E{ f (X)

g~~~(X )J g(x)dx

a
= E 

Jb 
[ 

~~ ~~k - bk)uk(x.) - 
k=n+l 

bkuk(x)] 2 g(x)dx

= E 
~~ ~~k - bk)2 + ~~ b~ J.

- 
k=O k=n+l

This last expression is j ust

00

6) ~~ 
varcu k(I)] + ~~ ~~k=O k=n+l

In (6) the first term is the variance term and the second term is the

bias term.

A desirable property of any estimator is asymptotic consistency ,

-hich , loosely speaking , means that as the size of the sample set

increases , the error decreases. To sharpen this notion , we define

several types of asymptotic consistency .

7) Definition

Let be an estimator for f given a sample set of size N.

Let be in (a,b).

If E rf N(X O) - f ( x 0)] 
2 —+0 then ~~is

“asymptoticall y consistent in the mean square sense at xe. ”

If E [~ 4
(x) — f(x)] 2 dx —~ O then f~is

b N-,oo
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“asymptotically consistent in the integrated mean square sense.”

If for every c~~0 there is an N
~ 

such that for N>N C we have
1’r ~ lfN

(xo) - f(x0)J > c3 <c , then ~~is assymptot ically cons i stent —

in probability at x0.

The definition of the estimator (4) is not complete, s ince we

have not specified the choice of n. Let us choose n=n (N) as a func-

tion of N in such a way that

8.1) n(N)-+~o- as N— ~’~~ .

8.2) and n(N)—*0 as N— ’~~.N
If we assume that there is a uniform bound B such that

varCu k(X)]~~ 
B, 1c0 ,1 ,2,...

then a simple argument shows that with choice (8), the estimator (‘I)is

asymptotica l ly consistent in the integrated mean square sense.

The precise dependence of n (N) is here left del i berately

vague . Optimal choices ~~ iiv ~ et igated  in [9]

An often-studied ex ’- ~- ‘~i of (4)  is
A

7) f (x )  ~ g(x)  ~ ~;(h) bkuk(x )
k=O ~

where {Wk(’)~ 
~~ 

is a sequence of weights pa rameterized by a

posit ive parameter h. ~e caoose the weights so that

8.1) Wk
(h)_3 0 as k— ~~~

8.2) Wk(h /~~ 
1 as h —~ O.

Optima l cho ices o~ the wei uht sequence {w k (h)
~ 

nave ~~en
~ k-O

studied in [133 . Briefly, the op t imal functional form o f - - .‘ . ( . )

depends on f, and the choice h h (N) depends on the sample set size .

L ________________________ ______________ - . -~~ - - - —
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II. B. Fourier Series Estimators

The Fourier series estimator, a special case of (II. A. 4),

has been studied extensively by Kronmal and Tarter [9). They were

interested primarily in integrated mean square error and optimal

truncation point n for the estimator. We shal l be concerned here and

later with the pointwi se mean square error, E (x0) - f(x0)) 
2 The

following development in this section is new, although it follows

somewhat in the spiri t of ~l) and [2).

From now on we will assume that f takes its uspport on a finite

interval ta,b1 . The error introduced by this assumption is small in

comparison to the bias and variance components to be analyzed later.

Furthermore , we will take a = 0, b = 1. This is done for technical

convenience , since a simple linear scaling and translation will return

us to the general case [a ,b]
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Let {wkt~~} k= -f,O be a sequence of (complex) functions of

a real positive variable h. Consider the estimator given by
A

1.1) ~(x) = 

~~ 
wk (h)b k exp (2rrikx) ,

A N
1.2) bk 

_ 

~ E exp (— 2 T T ikX . ) .
j= 1 3

We are interested in the behavior of this estimator for large N.

In particular , we will derive asymptotic estimates of var [~(x0))

and bias [~(x0)] for x0~ [o,i) .
It is clear that the behavior of f depends greatly on the choice

of {wk(.)} k= —oo and of h. We will now take a digression to study
- - some properties of {wk()} k= _ 0 0  

which we will then use to answer

questions about f.

2) Lemma
00

Let {Wk()} k= ~ be a e-etght sequence .

Suppose for each h) 0
00 .,
~ Iwk(h) ~ 

‘ < ~~~~ and
k= -00

for each k, wk(h) 
= W k(h)* .

L ________________________
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Then the kernel Kh defined by

Co
2.1) Kh(x) ~ ~ 

wk(h) exp (2~rikx)k=— oo

is a real periodic function in L2 ( 0,13 with period 1.

Moreover, the estimator (1) may be written as

A N
2.2) f(x) = 

~~~ 
Kh(x_X.)j=1

Proof

Statement (2.1) is imediate.

For (2.2), notice

A

f(x) 
~~ 

wk(h) bk exp(277ikx)

= 

~~ 
~ exp (_2 ?r i~~.)] wk(h) exp(2irikx)k= — c o  j 1

0°
= ~~. ~ ~~ 

wk(h) exp (2’rikx 
- 2~rikX .)

j 1  k -co

= 
1 N 

Kh
(x _

~j
)

I

Expression (2.2) ha s a form similar to that of the Parzen

kernel estimator (see [2] ). However , in the present case Kh(.) is

a periodic kernel and does not depend on I’m as a simple scale factor.

I
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The dependence on h is more complicated , and thi s dependence must

be conditioned for the estimator to behave properly.

Henceforth we will assume that the weight sequence satisf ies the
follow ing:

3) Conditions

3.1) fwk(~~~ ~ satisfies the hypothesis of lema (2).

Moreover , Kh(x) ~ ~~ 
wk(h) exp (27rikx)

satisfies

3.2) Kh(x)
~~

O

3.3) Kh(~
X) = Kh (x )

1’ ½
3.4) Kh(x)dx =1J -½

3.5) Kh (x) is pointwise continuous in h> 0 cue x.

23.6) I Kh(x)x dx4O as h -, 0.
J -½

3.7) Let ½”’O.

then

2( K
h(x)x dx

JE —~ 0 as h-40
/

K (x )x 2dx

3.8) Let ½>E>O. Then there exists > 0 such that 

- _ -—- 
_
~~~~~~ -_ -  - -—



½ 2 
12.j Kh(x) dx ( Bc

H ash-+0.

Under assumptions (3) it is possible to establish some limi ts

which will arise shortly in the asymptotic error analysis. The proof is

straightforward though lengthy analysis and is omitted . (The omitted proofs

may be found in [231.)

4) Lema

Under the assumptions of conditions (3), we have

2 __
4.1) J Kh(x) dx—9 ;~ as h— ~ O - 

-

4.2) Kh (x) Ix I 3dx
-½ —~‘-O as h-40
½ 2K, (x)x dx

~ 
Kh(x) 2x 2dx

____ 

—~ O as h — ~-0

1’ ½ Kh(x) dx
d -½

t
T~-.-o of the quantit ies are ii ’p i I ~~ r~n ’~’ nh In merit specific

notatio n which will be used extensi ’.-aiy .

L
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5) Definition

For a kernel Kh(), let

( ‘½ 2c(h) ~ .1 ( Kh (x)x  dx
2 
~ -½

r’½
v(h) 

~ 
Iç(x)2dx

‘J -½
We require one further lemma about these quantities.
6) Lemma

6.1) v(h) and c(h) are continuous in h >0.

6.2) For every N sufficiently large, there is an hN such that

v(hN)

c(hN)

6.3) If hN is chosen by (6.2), then

v(h N) 2
+ c(hN) —+ 0 as N—+~~~~.N

Proof

The first statement follows from condition (3.5) and the

compactness of the interval of integration .

Since v(h)—3 .oo and c(h)-9 0 as h—+ 0, it is clear that

v(h)/c(h)2 —+00 and is a continuous function . Hence (6.2) follows .

With hN chosen by (6.2), ~

v(hN) + c(hN)
2 

= 2c(hN)
2_4

~ 
0 as hN

_* 0.

0
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Now we are ready to state the main theorem of this section.

Al though the proof follows the Spiri t of RosenbiattEl] , the result

is original for Fourier series estimators. Before now, all error

estimates for series estimators were of the integra l type

2E [ f(X) — f(x)J dx. The followi ng result gives estimates
u0

of local type E 1f(x0) - f(x0)] 
2 It is an important step in

the later construction of the modified estimator which adapts to the

local properties of f.

To aid in the proof we introduce ~, the periodic extension of

f, defined by

~(x+ k) f(x)

where x~ [0,13 and k is an integer.

8) The orem

Sup pc ee

8.1) f ~ 
‘ [0,1] and vanishes in a neighborhood of the

end points ;

8.2) is defined for x c to ,i] and h~~0 by

“C
A A
f (x )  

~
- W~(h) bkexp (2~~’ikx )

N
b~, 

‘= ~ exp (—2~7ikX.)
‘ ‘~ ~

— 8.3) The sequence 1w k ( .)
~ ~~~~ sat isf ies cenditions (3).

Then for x0 c [0,1)

—~~
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8.4) 
h40 

E[f (x 0)~ - f(x0) 
= f” (x )

- -  c(h) 0

If, furthermore, we choose h=hN as a function of N in such a way that

as N—+~~~, then

u r n  N varC~
’(x0)3

___________ = f(x0)v(hN)

Proof
N -

We can wri te ~?(x) = .
~~
. 

~ 
K~(x - X~)

j=l

where Kh( -
~
) is the kernel associated wi th [w k(.)

~ ~

By independence of the samples ,

E [i(x~)] 
= E [Kh(xo -X ) \

I’½
= 

~~ 
Kh(xO - y)f(y)dy = - K~(y) f (x~ + y)dy ~O -½

0
where f is the periodic extension of f. Since f vanishes in a

neighborhood of the end points of [0,1] , f also has three

continuous derivatives . Hence we can invoke Taylor ’s theorem wi th

rcmainder and expand

= K~(y) [ ( X
O

) +
~ 

‘ (xe) y + ½~”(X0)y
2

3 0
+ ~-r f’’’(z(y)).J dy

where x0( z(y)<y or y< z(y)< x0.
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By conditions (3.3) and (3.4), this reduces to

E [~ (x0)] 
= f(x0) + f”(x0)c(h) + K~(y) ~ “(z( y))dy.

Now 3- 3

- 
E {~

(X0)] - f(x0) 
= 

J 
K~(y) ~~~;“(z(y))dy

c(h) c(h)

½
K~(y) ~yj

3dy

~ 
1 sup . f’’’(x) • —½

— 3! x EfO ,1) c(h)

and this —~ O as h —)’O by lema (4). This establishes (8.4).

Again by independence of the samples ,

var [~
(XO)] 

= var 
[ 

Kh(x O -

= Kh(xO - y) 2 f (y)dy - (E Ef(x0)~ )
2

Using the same extens~u and expans ion , we have

(‘1 2 2 °

~ 
Kh(xO - y) f(y)dy = 

J .½ 
Kh(y) [ f(x0) + f’(x0)y +

½f” (z(y))y 2]dy  

½ 2 2 °= v(h) f (x0) ± ~ 

~ 
Kh(y) y f”(z(y))dy.

I

Thus 
/ 

1_

N var[f(X0)] 
- f (x O) 

= 

½$ K~(y)
2y2!”(z(y))dy - (E[~(x0)3)

2 Jv(h) v(h) v (h) 

___
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r i ½
I K~(y)

2y2dy A 2

~ ½ ~~ If”(x)I J-½ (E[f(x0)])
— xeC 0,l3 v(h) 

+ 

v(h)

Now if h = hN~
)O as N—~’°°, then these two terms go to zero by

lemma (4). This completes the proof.

Thus we have approximately for large N ,

E[~~(x0) 
- f(x0)J 

2 ~~ v(hN) + f”(xo)
2c(hN)

2.

An obvious consequence is the following:

9) Corollary

Under the hypothesis of theorem (8), suppose we choose hN to

solve

v(h~,) 2
_____ = c(hN)

Then is asymptotically consistent in the mean square sense at x0.

That is ,

E[f  (x 0 ) - f(x0)] 
2 -~ o as N —3 OQ

Proof

By l err~: ~6), v(hN) 2
N + c(hN) —~.0.

Thus asym ptotic all y,

_ _ _  

.4
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E r~x0) - f (x 0)J 2 
~ ( f ( x 0) + f”(x 0)2 ) v(hN) c(hN)2 )

also goes to zero.

0

-
1

_ _ _ _ _  _ _  ~~~~~~~~~~~~~~ - — -~~~~~~~~~~
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III. A Data-Adaptive Estimator

A. Motivati on

Recall the simple form of the estimator (II.A.4)

A A
f(x) = g (x) ~: bku. (x)k=O F

with the integrated variance

var [~~(x)J dx = 

n var
J a  g(x) k=0 N

(th -

and integrated bias squared I (E[?(x)]  
— 

f(x)) 2 
dxg(x)

00

2k~n+1 bk

We see that for fixed N and increasing n , the bias decreases but the

variance increases . For samples of moderate size (say N = 100), we

may not take more than a few terms in the series before the variance

ov erwhelms us. Thus we i jst hope that f may be well approximated

by the first few terms in the expansion . Ideally, we would like to

choose a family 
~
uk~~~~O 

for which this occurs.

It is impossible tc se lect a f i xed  f a m i l y  {u k} ~~0 
which

works well for a l l functions f. So let us consider the following

adaptive strateqy . From t he  samp le set f X l,...XN} we will extract

cer tain infor~iation ab out f. We use this information to fashion a

family fu k~ 
‘
~~O 

ad ap uLe to f. We will then use this family to

obtain an estimate of f.

_ _ _ _ _ _ _  - - - --= - -_ -~~ -~~~~~~~~~~~-—-~~~~~~~~~~~~~ —S - --
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B. Construction of the Estimator

Let us consider a way of transforming a gi ven orthogonal family

into a new orthogonal family. We start with the Fourier functions

{ exp (2irikx)~ ~~~~~~~ orthonormal on t0,l3 . Suppose that we

have a transormation G satisfying

1.1) G:[O,1J —4 to,u]
1.2) G is one-to-one, onto, strictly increasing

1.3) g(x) 
~ ~~ 

G(x) is continuous.

We can then define

2) uk(x) ~ exp (2,rik G(x))

for -~~~<k < oo.

It is easily seen by a change of variable t = G ( x)

P1 (“1

J u.(x)uk(x)* g(x) dx 
= exp (2n~i(jG(x) -

0~~ 0

= S exp(2ff i (j t - kt))dt =

that the family {Uk} ~°!~~ is orthonormal with respect to ~ on

[ 0,1] . This immediately yields a series-type estimatco considered

earlier:
00A a .~ - /

3.1) f(x) = g(x) 2... w,,(h) b1,u, (x)

A
3.2) bk 

= 
~~~~~ 

U
k
(X.)*. -

j=1

I
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21.
Thus a transformation G provides us wi th a new estimator.

We will show later that if G(x)~~~ f(y)dy (that is, if g~~~f),

~.10
then the new family {uk}~~ 

provides an improved estimate. We

cannot choose G a—priori , of course, since knowl edge of G- is  equivalent
to know1ed~e of f . However ,
we can estimate G from the sample. We propose the following

al gorithm.

4) Adaptive (or Two-Pass) Estimator

Choose h1)0, h2~~0, N1, and N2

so that N1 + N2 
= N. -

4.1) Let
00

~(x) ~ Z Wk(hl ) ak exp(22rik)()k=- ~

- - 
N1

ak ~ ~ Z exp(-2~~ikL )l j=1

A 
~ I AG(x) = i g(y)dy

~)0

4 .2) ~(x) ~ ~ (x) 
~~~~~~~~~ 

bk exp (277ik~(x))

bk 
= 

N2 Z 

exp(-2 . 77ik
j=N1+1

_ _ _ _  _ _  _ _  _ _  ---.4
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Remark

The choice of the parameters N1, N2 and Pm1, h2 is not specified

above. For theoretical analysis , h1, and h2 will be chosen as

functions of N1, N2 (discussed below in section III.C). In practical

application of the estimator , we wi l l choose N1 < N2, h1 ~ h2 so

that ~(x) is a low—resol ution estimate of f and in the second

pass is a high resolution estimate. There is no way to apply theory

in practical choice of the parameters. As in the case of all other

p.d.f. estimators, we must resort to setting the values by heuristic

means.

III.C Asymptotic Error Analysis

We will now develop asymptotic error estimates for the estimator

(III.B.4). The development will be in two steps . First we will

derive estimates based on the assumption that ~ = g, a deterministic

function satisfying certain inequaliti es. Second , we will determine

bounds on the probabilit y that satisfies these inequalities . Thus

the final estimates will hold “in probability .”

Let G(~) be some deterministic function satisfying (IILB .l),

and let ‘1’ be defined by (III.B.3). We can rewrite the expression
A

(III.B.3.2) for bk as V

N
1) bk ~~ ~~

- 
~~~~~ exp(-2~~ikT.)i=l 3

where
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2) T~ = G(X~ ).

We know that the p.d.f. of the transformed random variable T G(X)

is just (see tl9] ) r(.) defined by

3) r(t) = r(G(x)) ~ f(x)/g(x).

We may cons ider ~~, a s imple Fourier ser ies es timator for r,

defined by

00

4.1) ‘
~(t) ~ ~~ 

wk(h) ‘
~k 

exp(27likt)
k= — oo

A
4.2) bk ~ ~ ~~ exp (-2 .l7ikT.)

j=l 3

Since we clearl y have

f’ A
5) fL:~ g(x) r(G(x)),

it fo llows th.~c
A 2 A

6.1) v -  [f(x)] = g(x) var [ r(G(x))]
6.2) bias E~~(x)3 g(x) bias [~~(G(x)J

Putting this together , we have the following

7) Th eo~
Suo pcue f and [w k~ ~ satisf ies the ~~;-othes is ofk= —o0

V.

theorem (11.3.8). Let G c C ~[0,lJ satisfy (iii .L.~~) and

be defined hy (11.B .3), r by (3), and~~ by (4).

Then for x0 ~ [0 ,1] suc h that g(x 0) ~ 0,



r~~
. 

~~~~~~~~~~~~~~~~~~~~~~ 
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u r n  E [~?(x0)] - f(x0)
h-+O c(h) 

= g(x0) r’’(t0)

where t0 
= G(x0).

Further , if hN~
+O as N—3~~ , then

l im N var[~P(x0)J f(x0) g(x0).N-+ oo V (hN) 
—

Proof

Applying theorem (II.B.8) to the estimator ‘

~~ we have

urn E [~ (t0)] - r(t0) -

h-,0 c(h) 
- r (t0)

and

u r n  N var[~~(t0)]
N-~oc v(hN) 

— r (t
0
).

By (3) and (5) we have

E [f(x0)J 
- f(x0) E[~ (t0)] - r(t0)

c(h) 
= g (x)  

~(h)

Thus

u r n  E [~ (x0)J - f(x0)
h-~ O c(h) 

= g(x 0 ) r (t 0)

Al so,

-

~ 

~~-- --
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N var [~P(x0)] — 2 N var [’~(t0)J
v(hN) 

- g(x0) ~~~ v (hN)

A -

Thus u r n  N var[f(x0)J 2
N-too v(hN) 

= g(x0) r(t0) 
= f(x0)g(x0)

I I

We can see by the preceeding theorem that the quantity r’’(t0) is
A

of interest in the asymptotic error of f(x0). We will spend some

time examining r’’ and its dependence on the transformation G.

8) Lema

Let f, g E C2 [0,1) be p.d.f. ’s.

Define

G(x) ~ g(y)dy

and for XE [0,1] such that g(x) ‘ 0

r(G(x)) ~ f(x)/g(x). 
- 

-

Let x0 € (0,1) with g(x0) ‘ 0, and t0 
= G(x0).

Then

r’’(t0) 
~~~ ~

=
~0 

r(t) = 

g(x0)
5 {g(x0)

2fhI (x Q)~g (x0)f(x0)g
1~ (x0)

+ 3f(x0) [g”(x0)] 
2 

- 3g(x0) f’(x0) ~
1(x

o
)~~

.

L - — _ _  .~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



_ _  - ---— - .5 - - ---— - —-‘ -—--- .—-.~~~~~~~~~~ - -~~~~~~~~~~—

26.

The proof of this lemma , a straightforward calculation , is

omitted . We now establish a bound on r’’(t0) under the assumption

that gzf.

9) Lemma

With the same hypothesis of lemma (8), suppose further that

we have

~g(k)(x0) - f~~ (x0)I 
‘
~~~ A ~ l , for k0 ,l ,2.

Let B(f,x0) = max 
{ 
l,f(x0), )f’(x0) I  , If’’(x0)I} .

Then at t0 
= G(x0) we have -

Ir ’’ (t o)I ~~~~~ 24A_B(f ,x0)
2 

- -

g(x 0 )5

Proo f

- - For c o n y : ;  :ooo , we wi ll wri te f for f(x 0 ), etc.

~e have by To : ‘ ( - -
~

)

r’’(t0) ~~ 
~~g

2f ’ ’  - g g ’’f + 3g ’2f - 3g g ’f’~~

~~ fg [gf ’’  - cg ’’] + 3g ’[fg ’ - gf’J~~.
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We will make use of the easily verified inequality

- rsI~~~½ (
p—r).~q+s~ + ½JP+rI .~q-s~

First,

j gf’ ’-~g’’I ~ ½ (g—f~ ff’ ’+g ’’J + ½ jg+f) l~~~~

’’ -

~~~~

’ ’j

~ ½ A (2B+A) + ½ (2B+A) A 3AB

Second,

fg ’~gf9 ~~½ ~
f_g

~~f’+g’) + ½ ~f+g~ Lf ’ -~’I
- ‘  

- 

½ A (2B+A) + ½ (2B+A) A ~~ 3AB

Moreo v er,

g = f - f g - f  ~~lf I + J g - f 1~~ B+,4~~ 2B

g ’ f’ ÷ g ’ - f ’ ~~~
- B + A ~ 2B

i nus

lr ’’(to)t ~ 2B 3AB + 3 - 2B 3AB
5 —

9

~- 24AB2

5

0
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We now collect what we have so far into a theorem giving

asymptotic error estimates under the assumption g~~f.

10) Theorem

Suppose

10.1) f € C3t0,l] and vanishes in a neighborhood of the

endpoints.

10.2) [w k~ °° satisfies conditions (II.B.3).
k=-oo

10.3) G E C3 (0,1) satisfies (III.B .l).

Let g(x)~ 
.

~~

- G(x), f be defined by (I1I.B.3),

and x0 ~ (0,1) such that f(x0) ~ 0.

Choose numbers 0 < p < 1 and 0 < A < pf(x0).

Suppose moreover that

~ g
(k)~~~) - f~~~

(x
0)I ~ 

A fo r k~0 ,1 ,2.

Then we have

10.4) u r n  E [~ (x0)] 
- f(x 0) AB(f ,X 0)2

h—p 0 ~(h) — 
24 

f(x0)
4(1- p)4 ‘

where -

B(f ,x0) maxfl , jf~~~(x 0)(~~ (k= 0,1 ,2).

Furthermore , if hN —
~

O as ~~~~~~~~~~~~~~~ , then

____ _  -. --- -5-- - -
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10.5) u r n  N var Lf (x o) 
2

N-P00 v(hN) 
-f(x0) ~~ Af (x0)

Proof

By theorem (7) we have

l im E [~
(x O)] - f(x0)
c(h) = g(x0)r ’’(t0)

and -

u r n  N var[~
’(x
0)]

N900 v (h1~) 
= f(x0

) g (x0).

By lemm a (9) we have

Jr ’’(t0)J ~ 24 AB2

g(x0)
5

Thus

lim E f(x 0) - f(x 0) 24 AB2
h-~o c(h) g(x0) 4 ‘

Since f(x0) ~~~
. f(x0) f(x0)

g~x0 ) f (x 0 )-A — f(x0)-pf(x~) 
= ______

we obtain 
-

u r n  E [‘f(~ )] 
— f(x ) a4 AB2 1

c(h) f(x0) (l- p)

which is ( 10. -: ).

(10. E follows immediately since

f(x 0)g (x 0 ) - f(x0)
2
( ~~ A f(x0). _ _ _

- -  -5 - 

1 1 

_ _ _
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Now let us return to the adaptive estimator (III B.4). We

know that ~(x0) is a consistent estimator for f(x0), by theorem

II.B.8 (with proper choice of h1 
= hN ). The next theorem extends

1
consistency to the first and second derivative . First, however , we

define

11.1) For k=0,l ,2,

~~ f~ 
K~~ (x) 2 dx ,

where K~~~(x) 
~ ~~~ 

Kh(x).

Note v0(h) v(h).

11.2) Y(h) ~ max ~ v0(h), v1(h), v2 (h)~~ .

12) Theorem

Let be defined by (III.B . c).

Suppose that the kernel Kh associated wi th

{ 
w~~ ~

‘° is in C2 [0,1] , and fE C5 110,1] vanishes in a

neighborhood of the endpoints .

Define for x E (0,1) and k = 0,1 ,2

~
(k) (X) 

~~k [
gCx ] .

Choose h1 hN to satisfy 
:-

-

1

_ 
_ _ _ _ _ _ _
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V(h )

N 
= c(hN ) .

Then for x0 E (0,1), Er~~~~(x0) - f (k) (X )J ~~~~

as N1 —300 -

Proof
“1

We can write ~ (x) = 
~~
. 

~~ 
Kh (x -

l i=l 1

Since Kh ~ C2 [O ,l] , 
-

~~ ~~~~ 

K~~ (X
~ 

- 
X
j

) exists .

Now by integrat ion by part s , we get

E[~~~~(x 0)] = ç 41) (x 0-y)f(y)dy

= -K k (x 0-y )f(y) - [-K b (x 0-y )] f~
1
~ (y)dy

“1 0 t J O 1

= j ’ K~~(x 0~y)f
W(y)dy .

A similar result h~ l ds for E[’~~
2
~ (x 0)]

Thus for k = 0 ,1 ,2 .  - c obtain by previous methods

= 

~h 1 
(x 0-y)f~~~(y)dy

L -- _ _ _ _ _ _ _ _ _ _ _ _
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= 

S-½ 
Kh (y) [~

(k)(x0) + ;(k+l )(X )y + ;(k+2)( x ) ~~ -

+ 
k+3)(z(y))~~ ] dy

= f(k) (x0) + f(k+2)(x0) c(h1) + Kh (Y) ~~

Thus we have an estimate for the bias

I E[~~~~(x0)] - f ( k ) (x )I c(h1)

+ sup f ( k+3) ( )l1~~( h )  akx€ (0,l) J

since 

~~-½ 
Kh1

(Y)
~~ dy 

~~ S ½ K
h (y) y

2dy = c(h 1 ).

For the variance we have

var [ ~(k)(X )] = var [ K~~~(x0-X)]

Kh (x 0-y) f(y)dy 
.

1 ~~O 1

Again the Taylor expansion with remainder yields

K~~ (x0-y)
2f(y)dy = vk(h u )f(x ) + ½ 

~~

2 
K~~~(~ ) 2y2 

~“( :(y))dy. 

---5 —5 -- - -~~~~~
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var[~~~~
(x
~)]~~ ~~fvk(hl )f(XO) + 

x€~(O ,l) 
I f”(x)~ ~~~

2

½
K~~

i

) 

(Y~~~dyJ

~ 
{v k (hl f (x Q ) + SUp j f ’ ’ (x )j  Vk(hl )~~

v ( h )
— N1

Hence by the indicated choice h1 = hN1

E [~~~~(X0) 
- f(k) (x )] 2 = (E[~~~~(x 0~ - f(k)(x~~/ 

2

, ~2 2 v~(h , )
— c

~.
hN / ak + 

~ b— 4 0
N

~~

D

We can now state the final and chief result on the asymptotic

errcr of the adap tive estima tor .

13) Theorem

Suppose

13.1) f E C5 [0,1] and ‘.‘anishes in a neighborhood of the
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endpoints.

13.2) Kh(.) associated with fwk(h)}
°
~ 00 

is in c2ço ,uJ

13.3 ) are defined as in (III.B.4)

13.4) fhr4~~ 
is chosen to sa tisfy = c(h N )2

N1

{hN } .  is chosen to satisfy v(hu )/N2 
= c(hN )

2

13.5) x~ E (0,1) such that f(x0) ~ 0.

Choose C>0, 1 > 1>0.
Then there exists N.1 such that

1
E1f(x0)j - f(x 0)

~r f 
~~~~ 

c(h N ) 6 4 ~
and ,%

N var [f (x 0)J 2
~rf ~

1
~~~o~ ~

(h N ) - f(xo) ~~

Proof

Recalling the notation of th~orem (10), let us pick A so that

0 <A <½ f(x0), 0 < A < ~/f (x
0
), and

24 A B(f,X0)
2

f(x0)
4 (l-½)~
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Then by theorem (10), if

13.6) (~~~~(x0) — f(k) (x )( ~ A for K=0,l ,2 then

13;7) u r n  
E[f(x0)J - f (x

0) 

~~~ 6
N2

-~O’O c( N2~

and

P12 var[~
’(x )]‘ 213.8) lim — - f(x~..j 

~~~~~~ 

.v t ,1 I - —

Reca ll that by Tc hebichev ’s inequality for a random variable Lwe have

~r f III ~~~ A }  � E [iJ 2 IA2.
Now by theorem (12) we have

E ~~~~~~ - 
f (k )

( )J  

2 
-40 as N1

— 0 .

Thus Lhore is some N1 such t ha t

E ( ‘0 k)
~ X ) - f(k)(X )72/A2 ~

ThLs , r
r ‘~i is Fl1, boun ds (13.7) and (3.8) fai l to hold with

fl~~ ~~~‘~~
1t . ~~

I

U 

-- - .~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Discussion

We now consider an intui tive interpretation of theorem (13).
A

For this purpose, let us denote by f.~ the simple Fourier series

estimator defined in (II.B.1) and by the adaptive estimator

(III.B.4).

We have seen from theorem (II.B.8) that for large N, that the

bias lE1~ (xoY~ - f(xo)l ~~ lf’’(xo)I c(hN).

Theorem (13) gives the analogous result -

- f(x0)( ~~ ~ c(h~~).

The factor of proportionality 6 can be made as small as desired ,

such as € <( I~’ ‘(xo)! , by reserving enough samples X1,... 
~
XN in the

first pass . Now if the ratio C(hN) 
= c(h N_ N~

) as N-+ °0, N1 fixed .

then the asymptotic bias of ~2(x0) is smaller than that of

A

‘
V

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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IV. Computer Simulations

In secti on III we have developed an asymptotic error analysis

for the adaptive estimator which describes large-sample behavior .

The asymptotic approximations made are not valid for small samples.

Yet it is the case of small samples which is most important in practice.

Hence we must turn to computer simulations to demonstrate the behavior

for small samp les .

In the following simulations we consider a mixture of two

Gaussians -

1) f(x) 0.78 f1 (x) + 0.22 f2(x)

-. - 
where f1 is N (0,l) and f2 is P1 (1.6,0.4).

The sam p le se t consis ts of N = 100 independent variates drawn from

this density ,i- norated by a standard (polar method) pseudo—random

number genere tor.

This p. :.~~. ~- :~ ch osen as a test case because  i t has two closely

spaced modes ~c ;~~ nt e-~ by a shallow valley (see figure IV.l ) .  The

adaptive esti~ -~~c-r pr~ iiises reduced bias , and hence it shoul d be able

to reso lve the modes better than the conventional Fourier series

est imator.

In the t~ 
- retical (asymptotic) analysis in section III , we

part it ioned the s:imp le set .(X1... ‘~ N} into two parts 
~~l ‘~ “~ N1 I

{ +1 ~

. . The first part was used in the fir st pass ,

~nd the s000ni ~:art w~s used in the second pass.  The partitioning

greatly siTh l i~ :ed t h?  theoretical analysis. Howe’.~~r , in small—

si~ ple-set n~;:::eri cal ar als , it was foun d that perf~:.:~ nce of the

I~sti mator ii::~ rc -;ed if the entire sample was used in both passes .

L ~~~~~~ -——~~~~~~~~~~ -—- -- - -.—-—
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The numerical trials reported below were thus conducted .

Specifically, for a samp le set {X1~
...KNI (N=l00), the

estimator was implemented as follows :

2.1) ~(x) (1~hi~~ ak C05 2zrkx

2.2) ~~ ~~ ~~- ~~ cos 2,7kr. (k~~ 1)

a0 —

2.3) ~(x) -~~~

2.4) ~~(x) ~ ~(x) 
~~ ~~ 

cos(2ffk~(x ))

2.5) bk cos(2lIkG(X.)) (k~~~l)
b0 = l

~The expans ions employ only cosines in order to simplify the
computer program. )

~~ adaptiv e estimator will be compared to the simple

Kror ~~-Thrter type defined by

.
~~

) p
1 (x) 

~

‘ cos 2 7kx

N
2.2 ) C

k ~ 
.
~~~~~~~ cos 2lTkX . (k~~~l)j= l 3

‘c’o 1

——- --

-~
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To make this comparison more direct, in (2.4) we have chos~en a

weight sequence corresponding to simple truncation . (The truncation

point 5 was chosen by trial and error.) Note that for h=l , the
A Aestimator f2 is identical to f1 for n5 . Below we will observe the

effect of varying h and n.

The results of the trials will be presented in two ways. First,

we will examine the estimates obtained from one fixed sample set

as h varies for 
~2 

and n var ies for ~~~ . These es timates are shown in

graphica l form in figures IV.2 through IV.7. Second, the integrated

square error
Ill

( f(x ) - f(x) )  dx
0

will be computed for 25 sample sets , and statist ical ly reliable

conclusions will be drawn .

Figure 2 shows the re5lJ Th For and h=l . This is the trivial

case , since for this choice of h , ~(x) 1; it is identical to a

simp le Fourier series est ill.~ae . ~ote t ha t  the estimate does not

resolve the two modes of f. Also we see a substantial negative tail

at the right of the graph. Th~ necativity is a result of truncating

rather than tapering the se r ies terms in (2.4).

Figure 3 shows the results for h = 0.4. Now ~ begins to

concentrate mass near the O-O~ -?S of f . We see that 2 beg ins to

resolve the modes and t h a t  t~ -~~ n o ative tail is somewhat reduced .

In figure 4 , h equals 0.25. Now does a ve ry good job of

resolving the modes , and the neQative tail is almost eliminated.

Clearly , figure 4 is a much better estimate than figure 2. By

-- --- --4



-- 

40.

allowing the estimator to adapt (as h varies) we have greatly

reduced the bias .

One may wonder how well the simple Fourier estimator (3)

would perform if we vary n. The case of n=5 is shown in figure 5.

(This is in fact the same estimate as in figure 1.) Now as we

increase to n=7 (figure 6) and to n=10 (figure 7), the performance-

is improved . However, even in the best case (n 10), the simple

Fourier series estimator is inferior to the adaptive estimator. Note

in particular that the simple estimator is able to resolve the

modes in figure 7 only at the expense of introducing spurious modes

(and negative values) in the tails. This behavior is characteristic ,

since the simple series estimator provides a constant amount of

resolution over the entire interval [a ,bJ . The adaptive estimator,

on the other h a -r d .  tunes its resoluti on to the data ; it provides

higher resoluti on where the density of the data is higher.

r~ext , we o ::aoiine some Monte Carl o estimates of the integrated

mean square error of and 
~~ 

Twenty five sample sets, each set

consisting of ore hundred variates , were independently generated.
thFor the i s :n pTh set ( i 1 ,... ,25), est imates f 1~~ and f2 1  were

obtained . For ..oh estimate , the integrated square error

(‘1 ,,,
4) ek i 

= 
~ ~~ 

.(x) - f(x))2dx (k=l ,2; i l ,...25)
~.10 /

was cc:~puted nu;oerical integration . These errors are tabulated in

tabl e IV. 1 .

Col ui~ - A i a the result for the adaptive estimator f~ with

L - _ _ _ _  - - — 
-~~~~~~~~~~~
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h=O.25. The average e2 is 0.0078 with standard deviation 0.0043.

Compare this with col umn B, the result for the simple Fourier series
estimator wi th n5. For the latter, = 0.0099 with standard

deviation 0.0028.

For these trials , the average integrated squared error for

is substantially less than that for ?.~. Since n 5 , the only difference

between the two estimators is the preprocessing step (2.1 — 2.3).

This clearly shows the improvement obtained by the prior transformation

G.

We would like to test the difference in the averages of and

e2 for statistical significance. Since the random variables ek~ 
have

no readily identifiable distribu ti on , we will em ploy a distribution —

free sign test for the median difference (see [22J ) .  Consider

the null hypothesis

H: medi an (e1-e2) 0

against the alternative

A: median (e1-.e2) > 0.

Clearly if H is true then e2 ) e~ is as likely as e2 < e1 and

f2 is no better than f1. If A is true , howeve r , then e2<e1 is more

likely.

Comparing columns A and B , we find e,~ < 
e~~ occurs 22 times ,

-
~1

with the reverse occuring three times . Referrino to t - e one-tailed

cumulative binomial distribution we see that H ~ay be rejected with

significance 0.001.

Next we compare f2 to for n=10 (columrL C). ~em e again the

L _ .  .~~~~~~ - -  .~~~~~~~~~~~



average e2< ~~~~

. However, the sign test is not significant for 25

trials. Therefore, another 25 trials~were run and the results are

tabulated in table IV.2. Applying the sign test for the 50 trials

yields 34 occurrences of e21 < e11 and 16 occurrences of e2~ ~ e1.
Thus we may reject H with significance 0.01.

Column D tabulates the results of 25 trials for f2 wi th n=7.

Note that = 0.0076, which i s not s ignificantly di fferent from

e2. Thus, in mean-square error alone, f2 is not better than f1 -

for n=7. However , by another performance measure, 12 is substantially

better. One important task of a p.d.f. estimator is to resolve and

estimate the location of the modes of the p.d.f. Thus, let us

define another error measure m equal to the sum of the squared

distances from the true modes (located at x 0  and x=1 .6) to the

nearest modes of the estimate. Thus if has modes at x=—0.2 and

1.4, then rn= (—0.2-0)2 + (l.4_l.6)2 0.08; if is unimodal with

mode at, say, xl.0 , then rn= (l— 0) 2 
+ (l_l.6)2 = 1.36. Errors

A A
m2 . for f2 and m11. for f

1 
(n=7) are tabulated in table IV.3 for

the 25 trials. The average = 0.31 which is substantially less

than ri~1 = 1.04 . Note that failed to resolve the modes (that is ,

~ u-as unirnodal) in 12 of the 25 trials; failed to resolve in only

2 trials. Thus , although f
1 

wi th n=7 performs as wel l as f2 in the

“average ” r-~asure of ir~ :arated square error, provides greatly

crhanced resolution ( :~ :~ is , l ower bias). Applying the median

difference sign test to table IV.3 yields a signifi cance of 0.02.
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V. Sumary and Conclusions

We have looked in detail at the orthogonal-series type of

estimator and at its assymptotic error analysis. The main contribution

of this paper is the proposal of a new estimator. This estimator is

constructed by means of a prior data-dependent transformation of the

basis in order to reduce the bias of the estimate. We have developed

an assymptotic error analysis of the adaptive estimator; and to

demonstrate the small-sample behavior of the estimator , we have consi-

dered some computer implementations.

As we see from both the error analysis and the computer simu-

lations , there is an advantage to be gained from performing the data-

dependent transformation . Resolution is improved (bias is reduced)

in comparison to the conventional Fourier-series estimator. This

improvement could be of significance in pattern-recogniti on applications.

As shown in the computer simulations , the adaptive esti-~ :~r was able

to resolve closely-spaced modes without introducing spuri~ -os modes in

the tails of the densities. In pattern recognition we are interested

in ratios of probability density functions. The ability to detect the

fine structure of densities from a limi ted set of samples can lea d

to improved discriminant functions (and hence a l ower rat~ of mis-

classification).

_ _  _- ~~~--_ _~~~~~~
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TABLE IV .l
“Integrated Squared Error”

Tr ial A 
- 

B C D
e2,~ 

for e1 ,~~ 
for ?.j e1 ,

~ 
for e1 .

~ 

for

- 

h = 0.25 n = 5  n 1 0  n = 7

i .0027 .0075 .0038 .0036

2 .0120 .0090 .0117 .009C

3 .0186 .0193 .0160 .0169

4 .0169 .0115 .0179 .0132

5 .0039 .0093 .0141 .0073

6 .0086 .0118 .0068 .0083

7 .0048 .0087 - 

- 

.0045 .0062

8 .0064 .0085 .0039 .0055

9 .0072 .0099 .0118 .0061

10 .0063 .0095 .0072 .0063

11 .0063 .0078 .0108 .0051

12 .0036 .0073 .0030 .0043

13 .0148 .0162 .0169 .0154

14 .0034 .0079 .0041 .0040

15 .0042 .0078 .0037 .0036

16 .0033 .0072 .o-:~~~ .0030

17 .0043 .0071 .0_ _
~~ .0029

18 .0129 .0097 .0H7 .0105

19 .0064 .0084 .0125 .0052

20 .0104 .0107 .02~~~2 .0140
21 .0076 .0107 .0C79 .0074

22 .0096 .0112 .H-4 .0104

23 .0085 .0103 .01~H .0074

24 .0058 .0100 .-~; ~E-2 .0067

25 .0067 .0103 . - -
_~~~~~~~~~ .0070

Mean .0078 .0099 .~ H?5 .0076

Standard
Devia -
Lt10fl ( .0043 .0028 .C055 

____ 

.0039
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TABLE IV .2

Tr ial 

“Integrated Squared Error (continued)”

26 .0032 .0025
27 .0045 .0048
28 .0074 .0076
29 .0051 .0060
30 .0172 .0184
31 .0095 .0112

32 .0102 .0119
33 .0088 - .0121

34 .0047 
- 

.0071

35 .0091 .0145
36 .0064 .0101

37 .0034 .0060
38 .0084 .0087
39 .0166 .0154

.0083 .0120

41 .0070 .0105
.0105 .0096

r3 .0065 .0065
.0094 .0099

45 .0052 .ü080
46 .0097 .0153

.0055 .0083

.0031 .0027
H? .0088 .0092

.0063 • .0053

~~:~~~fl .0078 

~

‘ 1 .0093

St~~ 1 (
~~rd I

~~viati on .0035 I . 0040

L _________________ 
~~

. - -
~~~~~~~~~~
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TABLE IV.3

“Error in Location of Modes”
- 

Trial m2.for 
~2 

mi~ 
for

(h = 0.25) (n = 7)

1 .06 .11

2 .08 2.85*

3 .39 4.23*

4 .42 .34
5 .32 1.24*
6 .22 .26

7 .16 - 1.31*

8 .39 1.16*

9 .03 .13 ’-
10 .01 .12
11 .03 1.70*
12 .03 .19

13 1.54* 1.41*

14 .03 .12

15 .32 .16

16 .26 .26

17 .33 2.32’-

18 .62 .58

19 .08 2.57*

20 .34 .31

21 .26 .34

22 .05 .16

23 .32 1.54k

24 1.41* . 1.18*

25 .01 1.48*

Mean 0.31 1.04

* Estimate was unimodal



n
REFERENCES 

. .1) M Rosenblatt , “Remarks on some nonparametric estimates of
a densi ty function ,” Annals of Math. Stat., vol . 27, pp.832-837
(1956).

2) E. Parzen , “On estimation of a probability density function
and mode, ” Annals of Math. Stat. , vol . 33, no.3, pp 1065-1076
(Sept. 1962).

3) G.S. Watson , M.R. Leadbetter , “On the estimati on of the
probability density, I,” Annals of Math. Stat. , vol . 34 ,
pp 480-491 (1963).

4) J.0. Bennett, R.J.P. de Figueiredo , J.R. Thompson ,
“C1assifi c~ ion by means of B-spline potential functions withapplication to remote sensing,” presented at Sixth Southeastern
Symposium on System Theory, Baton Rouge, La. (Sponsored by - , .

I.E.E.E.).

5) K.B. Davis , “Mean square error properties of density
estimates ,” Annals of Statistics , vol.3, no. 4, pp 1025—1030
(‘Y9 75 ).

6) D.W. Scott , R.A . Tapia , J.R. Thompson , “Kernel density
estimation revisited ,” J. Nonlinear Analysis , Theory, Methods,
and A~-Ucatio n s , vol . 1 no. 4, pp. 339-372 (1977).

7) T.3. U:~i;-er , ‘1Strong consistency of a nonparametri c
es t H~~te of ~ densit y function ,” I.E.E.E. Trans. Systems,
-lar. :;:d C’,-nerneti cs , vol.3 , pp. 289—290 (1973).

8) L. 7. :~:- .-~-oye~ T .J. Wagner , “The strong uniform consistency
of r~~:-est neighbor density estimates , ‘ The Annals of
Stat ist jç s , vol . 5, no. 3, pp 536-540 (19771.

9) ~~. Ironma l , M. Tarter , “The estimation of probability
:.3 iHes ~nd cumu latives by Fourier series methods ,” J.

7 . ..~~~5 t. it .  Assoc ia t ion ,  vol . 63 , pp. ‘H?5-9 52 (1968).

10) ~~~~~~ C:ncov , “Evaluation of an unknown distribution density
fr: nL-serva tions ,” Soviet Math , vol . 3, 1 559-1562 (1962).

11) -3. -.-an ~ivzin , “Bayes risk ”consistenc y of classificati on
~ro:edures using density estimation ,” Sa~khya Ser. A. , vol . 28,
p:2d ~ - 7 O  ( 1956).

12) S.C. Sch-.,-artz , “Estimation of probability density by an
3r~~c Iona1 series ,” Annals of ~-iath. Etc t. , vol. 38 , pp. 1Z51-
1255 (i~ 6]).

L _ _ _ _ _ _  _ _



- 56.

13 ) M. D. Brunk , “Un i variate density estimation by orthogonal
ser ies ,” Tech. Report no. 51 , Oregon State University (1976).

14) G.F. de Montricher , R.A. Tapia , J.R. Thompson , “~1onparametricmaximum likelihood estimation of probability densities by
penalty function methods,” The Annals of Statistics, vol . 3,
no. 6, pp 1329-1348, (1975).

15) U .  Good , R.A. Gaskins , “Gl obal nonparametric estimation of
probability densities ,” Virg inia J. Science , vol. 23 , p.171
(1972).

16) A. Wragg, D.C. Dowson, “Fitting continuous probab ility
density functions over [0,oO) using information theory ideas ,”
I.E.E.E. Trans. on Information Theory, pp 226-230, (Mar. 1970)

17) G. Wahba , “Optimal smoothing of density estimates ,” Tech
Report no. 469, University of Wisconsin - Madison (Oct., 1976).

18) P. Whittle , “On the smoothing of probability density func-
tions ,” J.R. Statistic. Soc ., (8) 20, pp 334-343 (1958).

19) G.G. Roussas , A First Course in Mathematical Statistics ,
Addison-Wesley , (1973).

20) G.G. Lorentz , Approximation of Functions , Holt , R i n e har t ,
and Winston , (1966).

21) D.W. Scott , R.A. Tapia , JR. Thompson , “An algorithm for
nonparametric density estimation ,” Computer Science and
Statistics: Ninth Annual Symposium on the Interface, (t-lay 1976).

22) J.V. Bradley , Distribution-Free Statistical Tests, Prentice-
Hall (1968).

23) G.L. Anderson , An Adaptive Orthogonal-Series Estimator for
Probability Density Functions , Ph.D. Thesis , Dept. Mathematical
Sciences , Rice University (1978).


